Model Evaluator API
The main class for handling model loading and text classification.
python
evaluator = ModelEvaluator(base_path="./new_filtering/lda_models")Parameters
base_path(str): Directory containing the trained LDA models
Methods
load_all_models(): Loads all the LDA models from the specified directory
python
evaluator.load_all_models()Each model directory should contain:
trained_model: The gensim LDA model filedictionary: The gensim Dictionary filelda_visualization.html: Optional visualization dataclassify_text(text, preprocess_func): Classifies text using all loaded models and returns aggregated results.
python
result = evaluator.classify_text(text, preprocess_func)Parameters:
text(str): Text to classifypreprocess_func(callable): Function to preprocess text Returns:Dictionary containing classification results from each model
get_ensemble_prediction(text, preprocess_func, threshold=0.5): Gets the most confident prediction above the threshold from all models
python
result = evaluator.get_ensemble_prediction(text, preprocess_func, threshold=0.5)Parameters:
text(str): Text to classifypreprocess_func(callable): Function to preprocess textthreshold(float): Minimum confidence threshold (default: 0.5)
Returns:
- Dictionary containing the best prediction and model information
